999国内精品视频免费,免费看a级毛片,国产第一页亚洲,www.精品国产,伊人久久婷婷,亚洲va在线观看,看国产毛片,99视频在线观看免费
收藏本頁
中國給水排水2025年城鎮污泥處理處置技術與應用高級研討會(第十六屆)邀請函暨征稿啟事 (同期召開固廢大會、工業污泥大會、滲濾液大會、高濃度難降解工業廢水處理大會)
 
當前位置: 首頁 » 行業資訊 » 水業新聞 » 正文

TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race AsianFin--It's crucial to a

放大字體  縮小字體 發布日期:2024-05-26  來源:TMTPost CEO: Five Major Miscon  瀏覽次數:92
核心提示:TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race AsianFin--It's crucial to assess how many years China lags behind the United States in AI, said TMTPost founder, Chairperson and CEO Zhao Hejuan, in a recent speech delivered in a c
中國給水排水2025年城鎮污泥處理處置技術與應用高級研討會(第十六屆)邀請函暨征稿啟事 (同期召開固廢大會、工業污泥大會、滲濾液大會、高濃度難降解工業廢水處理大會)

中國給水排水2025年城鎮污泥處理處置技術與應用高級研討會(第十六屆)邀請函暨征稿啟事 (同期召開固廢大會、工業污泥大會、滲濾液大會、高濃度難降解工業廢水處理大會)
 

TMTPost CEO: Five Major Misconceptions on China's Catchup in the AI Race

AsianFin--It's crucial to assess how many years China lags behind the United States in AI, said TMTPost founder, Chairperson and CEO Zhao Hejuan, in a recent speech delivered in a conference organized by Cheung Kong Graduate School of Business and Shantou University.

In the speech titled Five Misconceptions About China ’ s Catchup in the AI Race, she noted that many argue that after GPT-3 was released in 2020, and ChatGPT came out in 2022, China quickly developed models similar to GPT-3; after GPT-4 was released, it took no more than two years for China to develop a model comparable to GPT-4. However, that does not mean the gap between Chinese companies and their peers is only one to two years, said Zhao, who is an alumna of Cheung Kong Graduate School of Business.

"I find it rather misleading to use such time frames to describe the gaps because they are generational innovation timescales, not capability gaps," she added.

The following is the main content of the speech edited by TMTPost for brevity and clarity:

Dear alumni, the topic of my speech today is "Five Major Misconceptions on China's Catchup in the AI Race."

From the perspective of TMTPost, I play two roles in the field of AI, both as a researcher and reporter in the AI field, and as a participant in the application of AIGC in the content industry ’ s transformation.

TMTPost has closely followed the development of the AI field since the era of AI 1.0. In the AI 1.0 era, whether from the perspective of Chinese listed companies or applications, we seem to be catching up with the United States. However, in the AI 2.0 era, or the era of AIGC, we came to realize that China has lagged behind overnight.

I listened carefully to the remarks by each guest yesterday. One of the guests argued that China quick catchup after GPT went viral actually indicates that China followed hard on the heels of the United States in terms of strengths and capability building.

However, I'd like to offer a reality check now. I believe we might be overly optimistic in the immediate future. The optimism isn't just confined to the Chinese market; it extends to our expectations regarding the pace of the global AI application boom. I suspect that progress in the short term might not be as fast as everyone's expectations, and in the long term, there's a risk of being solely focused on immediate profitability.

For over a decade, we've been diligently covering developments in this field, closely monitoring AI-related entrepreneurship. However, we find ourselves in a somewhat stagnant position now. It's time to face the reality and strategize our way out of the "pseudo-AI entrepreneurship zone."

Let me explain in detail.

The two most talked-about things in the AI field this year are: the recent release of AlphaFold 3 and the upcoming release of GPT-5.

First, let's talk about the AlphaFold 3 model released by the Google DeepMind team on May 8, and TMTPost was the first in China to report on it and offered the most comprehensive coverage to the readership.

In 2022, the AlphaFold 2 Enhanced Edition was launched. Fast forward two years to today, and we witness the unveiling of the AlphaFold 3 model — a groundbreaking tool designed for predicting protein structures within the realm of biology. The pivotal shift in this evolution lies in the alteration of the underlying calculation methodology and model algorithm.

AlphaFold 3 integrates a combination of Transformer-based generative models and diffusion models. This fusion results in a remarkable advancement, with AlphaFold 3 boasting a prediction accuracy improvement of 100% compared to existing methods.

The prediction accuracy of AlphaFold 2 has already doubled compared to its predecessors, and now it has doubled again. Scientists have conducted comparisons, suggesting that this advancement could propel biological research forward by hundreds of millions of years and potentially save tens of trillions of dollars. This underscores the immense impact of AIGC.

However, China's research achievements in this field are relatively scarce. Today, TMTPost published a video clip of Professor Yan Ning's speech about two years ago. She remarked that accurate prediction of protein-related structures seemed unattainable with AI. Yet, today's AlphaFold 3 release seems to have effectively disproved her assessment.

The second is the upcoming release of GPT-5.

I believe the impact of this event will be as significant as the disruptive technological leap brought by AlphaFold 3, if not greater. The release of GPT-4 surpasses the shock brought by GPT-3.

Why has China been able to develop its own version of models rapidly? I attribute this primarily to open source practices. Before GPT-3, OpenAI operated on open-source principles, and even Google's Transformer paper was open source. However, it shifted to closed source after GPT-3.

This indicates a significant leap from GPT-3 to GPT-4, and the forthcoming GPT-5 is poised to achieve another substantial advancement compared to GPT-4, addressing many existing limitations.

During a meeting with OpenAI founder and CEO Sam Altman last September, he mentioned that OpenAI had been laying the groundwork for GPT-5 for some time. However, if GPT-5 merely offered incremental improvements in capabilities, it wouldn't require such extensive preparation. One fundamental change expected in GPT-5 involves segregating the inference models from the related data and potentially introducing its own search engine.

The AI advancements are remarkable. To put it pessimistically, China is far behind. To put it optimistically, China will have the capacity to catch up.

Next, I would like to explain why we assert that China must be cognizant of its status as a follower in the AI realm, refraining from overestimating its capability and instead dedicating efforts to diligent learning. It's imperative to address a pertinent reality we confront presently, thus necessitating the clarification of several misconceptions to comprehend our standing.

Misconception 1: The Gap between China and the United States in AI is Only 1 to 2 Years.

I believe it's imperative to challenge the prevalent belief that the disparity between China and the U.S. in AI amounts to merely 1 to 2 years. Is it truly such a narrow timeframe? And if so, what substantiates this claim? Many argue that China ’ s performance after the release of GPT-3 in 2020 and that of ChatGPT in 2022 demonstrates our ability to swiftly develop models akin to U.S. innovative products. With the subsequent release of GPT-4, we promptly produced a model on par with it. But does this imply that our gap is indeed only 1 to 2 years? Is this assertion accurate?

I find it somewhat disingenuous to characterize the gap using such temporal parameters, as they correspond to generational innovation cycles rather than our proficiency disparities.

Consider this: given that GPT-5 is unavailable now, we might not be able to develop a similar model in a decade. Yet, upon its release, we might require 2 to 3 years to catch up. Nevertheless, the caliber of the GPT-5 model merely represents a milestone in innovation and iteration for them, not indicative of our own capability level. This distinction is crucial, as it underscores a fundamental gap.

We must understand that this is truly a gap led by innovation, not a situation where we catch up in two years ith a single model.

Misconception 2: China is the Largest Market for AI Patents and Talent Globally.

We often assert, particularly during the AI 1.0 era, that Chinese investors and entrepreneurs making speeches in Silicon Valley would proclaim China's AI superiority over the U.S. A common metric supporting this claim is China's status as the largest market for AI patents and talent worldwide.

This patent market encompasses the volume of AI-related papers published and AI patents filed in China, both of which rank the highest globally. However, what's the reality?

Examining this chart depicting the new generation of global digital technology, we observe that the majority are AI-related papers. China undeniably holds a prominent position in terms of the quantity of AI-related papers. However, when considering the number of top-tier papers or citations, we lag behind.

In essence, while we lead globally in the quantity of papers, we fall behind in terms of top-tier papers or those with high citation rates, not only compared to the U.S. but also countries like Germany, Canada, and Britain.

Now, let's assess our engineering talent.

China indeed produces a substantial number of engineers and computer science professionals from universities. Many tech giants in Silicon Valley actively recruit computer experts from prestigious Chinese institutions such as Tsinghua and Peking University.

However, as of 2022, although China ranked approximately the second globally in terms of top-tier researchers, the number of China ’ s top-tier AI researchers is about one-fifth that of the U.S... And as of 2024, this gap may have widened even further compared to two years ago.

Therefore, the reality doesn't align with the notion that China is the world's AI talent powerhouse.

Misconception 3: The Main Obstacle for China's AI Lies in "Bottlenecked Computing Power".

The primary hurdle for Chinese AI is often identified as "bottlenecked computing power." The prevailing belief is that once we acquire relevant chips through various means, we'll reach the required level.

However, allow me to inject a dose of reality: in this phase of AI 2.0 development, computing power alone isn't sufficient. Model innovation capability and data capability are equally critical. Thus, the current reality is that not only is computing power a bottleneck, but so too are the innovation capabilities of our underlying models and our data capacity.

Let's address data capability first. Many assume that China, being a vast market with abundant consumer and corporate behavior data, must possess ample data resources. But I must be frank: much of this data is either irrelevant or inaccessible.

Earlier this year, during a conversation about meteorological data with a Chinese-American scientist who advises the Chinese Meteorological Administration, I mentioned that there are companies promoting models for meteorological calculations. The scientist bluntly stated that almost all of our meteorological data is useless due to a lack of organization, induction, and integration of historical meteorological data into computable formats.

Currently, China faces a significant deficiency in this regard. In the U.S., the most crucial aspect of the AI ecosystem is the development of the data market. However, in China, theoretically, there is no mature data market. This underscores a critical aspect of ecosystem development: the establishment of a robust data market. Without a mature data market, what meaningful calculations can be made?

Model companies in China may boast leading computing capabilities domestically, but the entire Chinese data market comprises less than 1% of the global data market. Moreover, when considering the efficacy of all data, including research and user application data, videos, or texts, the majority of mainstream global data, particularly research and user application data, is predominantly in English.

Consequently, if we cannot effectively compute with English data, how can we develop competitive large models of our own? This presents a significant challenge. That's why I emphasize that the bottleneck faced by the US isn't solely related to computing power. It encompasses the entire ecosystem, from computing power to innovation in underlying models, to data capabilities, and the establishment of a robust data market. Unfortunately, we are falling behind in all these aspects. Considering the time factor, it's extremely challenging to build up this capability adequately within ten years.

Misconception 4: Closed-Source Large Models vs. Open-Source Large Models: Which Is Better?

Recently, entrepreneurs and internet personalities have engaged in a debate regarding the superiority of closed-source versus open-source large models. However, I believe this debate is somewhat irrelevant; what truly matters is which approach is more suitable for a given context.

Both open-source and closed-source models come with their own set of advantages and disadvantages, much like the comparison between iOS ( closed-source ) and Android ( open-source ) operating systems. Each has its strengths and weaknesses. Presently, particularly in terms of performance, especially concerning large language models, where computations often involve tens of billions or even trillions of data points, closed-source models tend to exhibit significantly higher performance compared to their open-source counterparts.

For many applications or specific scenarios, the necessity for every model to be as large as tens of billions may not be crucial. Hence, open-source models remain viable to a certain extent.

For entities like OpenAI, aiming for Artificial General Intelligence ( AGI ) , closed-source models may expedite the concentration of resources and funds towards achieving the AGI goal more swiftly and efficiently.

However, for widespread application and increased iterations, open-source large models are also indispensable. Thus, we should transcend the debate over whether open-source or closed-source large models are superior. Instead, the paramount consideration should be whether we possess the capability for innovation and originality, rather than merely imitating at a basic level.

In discussions about a "hundred-model battle" or a "thousand-model battle," if each of our models harbors its own innovative elements and contributes inventive functions within its respective domains, then the quantity of models ceases to be an issue.

Indeed, in a scenario like a "hundred-model battle" or a "thousand-model battle" where innovation points are absent, and only low-level imitation and replication prevail, the necessity for numerous models diminishes. Thus, the crux of the matter lies in whether we can genuinely establish ourselves on the global stage in terms of model innovation capability. This is a matter that warrants meticulous consideration.

Misconception 5: The Explosion of AI in Major Vertical Industries Will Happen Quickly.

In China, there's often talk about an imminent explosion in vertical industries propelled by AI, with this year being touted as the inaugural year for large-scale model applications to surge. However, I've been cautioning friends that this year likely won't mark the explosion of AI in vertical industries. While it might signify the start of applications, it's not an explosion. Such transformative shifts don't occur overnight because every progression adheres to certain rules, and industrial development follows a distinct pattern.

The fundamental issue is that our overall infrastructure capability hasn't yet met the threshold for widespread industrial applications.

Consider this: even if our SORA or other applications achieve 50% efficiency, does that imply we can deploy them in 50% of applications? Not necessarily. If industrial applications demand a 90% efficiency threshold, and you're only at 50% efficiency, or even 89%, rapidand widespread application in that industry becomes unattainable.

It's important to realize that the bottleneck isn't just China's computing power; it's a global bottleneck affecting computing power worldwide, including American companies. That's why, despite OpenAI's advancements with GPT-5 and GPT-6, progress remains sluggish. At its core, large AI models rely on "brute force" – having sufficiently vast data, computing power, and energy. Without these resources, they'll hit bottlenecks, and progress will only inch forward.

Many companies may entertain the idea that since Chinese firms acknowledge their inferiority in technological innovation compared to the US, yet boast larger market sizes and stronger application capabilities, should they prioritize entrepreneurship and application development for swift success or results?

However, I believe this might hold true in the long term, but not necessarily in the short term.

Even OpenAI CEO Sam Altman stated that 95% of startup companies rely on large models for development, but each major iteration of large models replaces a cohort of startup firms.

AI doesn't operate outside the realm of general business laws. So, even if AI is deployed, it won't automatically supplant existing products until foundational capabilities have reached a certain threshold.

This concern was also echoed by the founder of Pika during our conversation earlier this year. When I asked if she considered Runway as Pika's primary competitor, she pointed to OpenAI as her main concern because of their inevitable development of multimodal technology. So, I believe that until foundational capabilities reach a certain level, newly developed AI applications won't necessarily displace existing ones.

Since the fundamental infrastructure capabilities haven't reached the stage of industry transformation, we can't herald a "booming" new era of AI.

Despite claims that China's mobile internet applications are global frontrunners, our current historical juncture doesn't align with the internet era or the explosion phase of mobile internet applications. Instead, we're in the current stage of AI development, akin to the early phase of Cisco, rather than the post-internet development stage.

Today's NVIDIA is like the Cisco of the past, when Cisco dominated the US market and its stock price rose 60 times in a year. At that time, were there any noteworthy internet companies? Many of today's internet companies might not have appeared back then. Later, with the improvement of basic infrastructure capabilities, the development of communication technology from 2G to 4G, the improvement of network technology, and the emergence of mobile internet and long and short video applications.

The current state of AI applications is primarily focused on enhancing industrial efficiency, but achieving a complete transformation of industries will require considerable time and patience.

This is why we refer to it as weak artificial intelligence, and China's advantage in its vast market cannot be fully leveraged at present. In the short term, the primary focus remains on content generation-related auxiliary tools, such as search, question answering, text and image processing, and text-to-audio/video conversion.

So, how should we navigate this landscape?

I believe it's imperative to establish a social consensus regarding our actions in the global arena and during the course of AI development.

First and foremost, we must prioritize enhancing fundamental innovation and fostering long-term capacity building.

This involves building a robust ecosystem, beginning with education. Initiatives such as establishing AI education programs, evaluating university education systems, and implementing frameworks for academic openness and collaboration should revolve around fostering innovative technological capabilities in AI. Additionally, we must enhance the foundational innovation capacities required for large model development. Without this groundwork, all other efforts would be akin to "water without a source."

Second, we must adopt a patient approach to navigate the AI explosion cycle across various industrial application scenarios. Every industry transformed by AI undergoes a cyclical process starting from changes in underlying technology, and this transformation won't occur overnight or in a single leap.

I firmly believe that each industry potentially influenced by AI will experience a bottom-up transformation and initiate a new cycle for the industry. It's not about immediate changes at the application layer. This principle applies to sectors such as media, robotics, manufacturing, biopharmaceuticals, and more. While they will all undergo disruptive effects, the ability of our fundamental research capabilities to keep pace becomes paramount.

Every industry begins its journey with foundational capabilities and infrastructure construction from ground zero, constituting the real industrial cycle.

Thirdly, we need to adopt a more open mindset to embrace the competition and challenges presented by global AI development without limiting ourselves.

While some may argue that Americans are holding us back, I believe it's essential that we don't hinder our own progress. This is why I advocate against engaging in low-level imitative competition. Instead, we should consider taking a more proactive approach in AI innovation, even if it means taking a break in AI governance, norms, and ethical frameworks, and embracing a more open attitude towards advancement.

I sincerely hope that our advancements in AI research won't follow the same trajectory as the beaten path of new energy vehicles. While there were innovations in new energy vehicles a decade ago, such as in intelligent experiences and battery technology, today, including Xiaomi's entry, we find ourselves stuck in low-level, repetitive pursuits that hinder our ability to progress.

So, I hope our basic research capabilities and innovation capabilities can progress faster, and we should maintain patience in our endeavors.

Lastly, I'd like to recommend TMTPost's new product, AGI. TMTPost has been a significant contributor and participant in the AI field, and AGI is its latest information offering. AGI primarily focuses on cutting-edge AI information, aggregating global AI technology trends. Through various content formats centered around in-depth analysis, it explores industry trends, technological innovations, and business applications, delivering the latest and most relevant AI insights to enterprises and users. AGI aims to present a comprehensive and dynamic view of the AI landscape.

 
微信掃一掃關注中國水業網/>
</div>
<div   id= 
 
[ 行業資訊搜索 ]  [ 加入收藏 ]  [ 打印本文 ]  [ 關閉窗口 ]

 
0條 [查看全部]  相關評論

 
推薦圖文
蘇伊士亞洲 程忠紅 直播題目:破局·共生·零碳未來——污泥處理處置的綠色革新路徑  本次直播將會分享以下內容:  1.污泥處理處置現狀與發展趨勢  2.零碳處理技術路徑與創新  3.低碳污泥處理處置項 中國給水排水2025年污泥處理處置論壇(上海)(6月4日全天) 同期舉辦世環會-污泥處置主題展 2025年6月4-6日 (請提前掃描二維碼免費報名,限200人;會議現場抽大獎——華為手機等)
康碧熱水解高級厭氧消化的全球經驗和展望 直播時間:2025年4月11日(周五) 14:00—16:00 2025-04-11 14:00:00 開始 WaterInsight第14期丨水中新污染物高級氧化降解機制探索 直播時間:2025年1月25日(周六)10:00-11:00 2025-01-25 10:00:00 開始
直播報告題目:城市更新政策背景下的供排水設施建設改造技術方向 1、城市更新由來 2、城市更新政策導向 3、供排水設施建設改造技術方向 3.1供水條例與排水條例要求 3.2供排水管網建設改造技術路徑 3 直播:《新國標下飲用水典型嗅味物質管控:在線識別、逐級強化、精準控制,保障供水安全與品質》 臭和味,是飲用水水質中的敏感指標,常引發用戶投訴。自新標準《GB5749-2022》實施以來,要求飲用水臭和
中國土木工程學會水工業分會—2024年排水年會 直播時間:2024年11月30日(周六) 08:30—18:00 2024-11-30 08:30:00 開始 復旦大學環境科學與工程系研究生課程環境工程技術前沿系列講座:環衛設施異味控制研究與實踐 直播時間:2024年11月27日(周三)13:30—15:00 2024-11-27 13:30:00 開始
報告題目:未來城鄉生態環境低碳可持續發展對策與綠色技術研究進展   報告人:中國工程院院士、哈爾濱工業大學  馬軍  教授 因泥制宜選擇污泥干化技術 直播時間:2024年11月26日(周二)14:00 2024-11-26 14:00:00 開始
11月14日上午丨2024粵港澳大灣區環境水務博覽會 直播時間:2024年11月14日(周四)10:00-13:00 2024-11-14 10:00:00 開始 中國水協團體標準《城市供水企業突發事件應急預案編制技術規程》宣貫會通知 中國城鎮供水排水協會
直播:中國水協城鎮供水排水協會城鎮水環境專業委員會2024年年會 直播時間:2024年11月1日(周五) 08:30—18:00 2024-11-01 08:30:00 開始 全球水務前沿科技創新技術研討會 直播時間:2024年10月31日(周四) 10:00—12:00 2024-10-31 10:00:00 開始
直播:2024年世界城市日中國主場系列活動“城市水安全與綠色可持續循環發展”論壇 直播時間:2024年10月27日(周日) 09:00—17:00 2024-10-27 09:00:00 開始 城市有機固廢(餐廚廚余、污泥和滲濾液)技術現況及發展趨勢 直播時間:2024年10月23日(周三)13:30 2024-10-23 13:30:00 開始
直播|沙特全球水務創新獎路演發布會 直播時間:2024年9月27日(周五)10:45—12:15 2024-09-27 10:45:00 開始 蘇伊士工業園區綠色低碳環境治理方案 直播時間:2024年9月30日(周一)9:30—11:30 2024-09-30 09:30:00 開始
主 講 人:江峰 教授/博士生導師  主講報告:硫基生物技術助力廢水低碳處理  時間:2024年9月14日(周六),10:00-11:00          主講人:江峰  中山大學環境科學與工程學院 水質安全與高品質供水研討會 直播時間:2024年8月30日(周五)13:30—17:30 2024-08-30 13:30:00 開始
先進水技術博覽(Part 16)| 紫外線水處理技術探索與實踐 直播時間:2024年8月31日(周六)上午10:00-11:00 2024-08-31 10:00:00 開始 肖威中博士--美國污水處理概述 直播時間:2024年9月2日(周一)20:30—22:00 2024-09-02 20:30:00 開始
北京市科協青年科技人才跨界交流活動--活動主題:AI時代的污水資源化應用創新  涉及領域:污水資源化、人工智能、物聯網  召集人:曹效鑫 博士  活動時間:8月21日下午  活動地點:北京未來設計園區 報告人:程忠紅,蘇伊士亞洲 高級技術推廣經理 直播題目:污泥干化技術的選擇  內容: 	不同干化設備的特點及適用性 	污泥干化系統的選擇依據 	干化在污
中國水協團體標準《城鎮污水處理廠碳減排評估標準》宣貫會通知  報告人:王秀蘅 哈爾濱工業大學教授  博士生導師直播時間:2024年7月17(周三)14:00-16:00 2024-07-17 14:0 蘇伊士 程忠紅 :反硝化濾池在污水脫氮中的差異化應用 直播時間:2024年7月2日(周二)14:00—16:00 2024-07-02 14:00:00 開始
先進水技術博覽(Part 15)|低碳型裝配式污水廠探索與實踐 直播時間:2024年6月29日(周六)上午10:00-11:00 2024-06-29 10:00:00 開始 吳迪   博士: 百年持續迭代,新型生物膜工藝在提質增效、督察常態化背景下的典型應用 直播時間:2024年6月20日(周四)14:00—16:00 2024-06-20 14:00:00 開始
Paul Westerhoff院士、王鵬教授等人領銜空氣取水學術與科技高端論壇 直播時間:2024年6月8日(周六)08:50 2024-06-08 08:50:00 開始 報告題目:《湖南省排水系統溢流控制技術導則》解讀及相關技術探討  報告人簡介:  尹華升,男,教授級高級工程師,湖南省建筑科學研究院副總工程師、湖南省非開挖工程技術研究中心主任,湖南排水協會副秘書長;
Water & Ecology Forum: 水與生態新起點 直播時間:2024年5月24日(周三)14:30 2024-05-24 14:30:00 開始 中國水環境治理存在的問題及發展方向 直播時間:2024年5月28日(星期二)14:00—16:00 2024-05-28 14:00:00 開始
5月22日下午丨《城鎮排水管網系統診斷技術規程》宣貫會 直播時間:2024年5月22日(周三)14:00-16:00 2024-05-22 14:00:00 開始 雙碳背景下污泥處置資源化路徑探索--杜炯  教授級高級工程師,上海市政工程設計研究總院(集團)有限公司第四設計院總工程師,注冊公用設備工程師、注冊咨詢工程師(投資),上海土木工程學會會員、復旦大學資源
JWPE 網絡報告/用于快速現場廢水監測的折紙微流體裝置 直播時間:2024年5月13日(星期一)19:00 2024-05-13 19:00:00 -楊竹根  英國克蘭菲爾德大學教授、高級傳感器實驗 紫外光原位固化法管道修復全產業鏈質量控制倡議 直播時間:2024年5月7日(星期二)9:00-16:30 2024-05-07 09:00:00 開始
華北院 馬洪濤 副總工:系統化全域推進海綿城市建設的應與不應——海綿城市建設正反案例1 直播時間:2024年4月30日(周二)9:30 2024-04-30 09:30:00 開始 高效納濾膜:中空纖維納濾膜的特點與應用 直播時間:2024年4月27日(周六)10:00-11:00 2024-04-27 10:00:00 開始-先進水技術博覽(Part 14)
聚力水務科技創新、中德研討推進行業高質量發展 ——特邀德國亞琛工業大學Max Dohman 直播時間:2024年4月14日(周日)15:00 2024-04-14 15:00:00 開始 康碧熱水解高級厭氧消化的全球經驗和展望 | 北京排水集團高安屯再生水廠低碳運營實踐與探索 直播時間:2024年4月10日(周三)14:00—16:00 2024-04-10 14:00:00 開始
世界水日,與未來新水務在深圳約一個高峰論壇 直播時間:2024年3月22日(周五)08:30—17:30 2024-03-22 08:30:00 開始 中國給水排水直播:直播時間:2024年3月14日(周四)14:00 2024-03-14 14:00:00 開始    題目:占地受限情況下的污水廠水質提升解決方案 主講人:程忠紅, 蘇伊士亞洲 高級
華北設計院:高密度建成區黑臭水體整治效果鞏固提升要點分析 直播時間:2024年3月4日(周一)9:30 2024-03-04 09:30:00 開始 2月23日|2024年“云學堂科技學習周”暨第一屆粵港澳大灣區青年設計師技術交流與分享論壇 直播時間:2024年2月23日(星期五)9:00—17:00 2024-02-23 09:00:00 開始
2月22日|2024年“云學堂科技學習周”暨第一屆粵港澳大灣區青年設計師技術交流與分享論壇 直播時間:2024年2月22日(星期四)9:00—18:00 2024-02-22 09:00:00 開始 2月21日|2024年“云學堂科技學習周”暨第一屆粵港澳大灣區青年設計師技術交流與分享論壇 直播時間:2024年2月21日(星期三)9:00—18:00 2024-02-21 09:00:00 開始
大灣區青年設計師論壇直播預告(第一屆粵港澳大灣區青年設計師技術交流論壇)  “醒年盹、學好習、開新篇”2024年“云學堂科技學習周”暨第一屆粵港澳大灣區青年設計師技術交流與分享論壇 山東日照:“鄉村之腎”監管裝上“智慧芯”    日照市生態環境局農村辦負責人時培石介紹,農村生活污水處理系統被稱為“鄉村之腎”,對于農村水環境的改善發揮著重要作用
人工濕地國際大咖/西安理工大學趙亞乾教授:基于人工濕地技術的污水凈化之路 直播時間:2024年1月30日(星期二)19:00 2024-01-30 19:00:00 開始 馬洪濤院長:城市黑臭水體治理與污水收集處理提質增效統籌推進的一些思考 直播時間:2024年1月25日 10:00 2024-01-25 10:00:00 開始
2024年水務春晚 直播時間:2024年1月18日(周四)18:00—22:00 2024-01-18 18:00:00 開始 《以物聯網技術打造新型排水基礎設施》 直播時間:2024年1月11日(星期四)15:00 2024-01-11 15:00:00 開始--劉樹模,湖南清源華建環境科技有限公司董事長,清華大學碩士研究生
WPE網絡報告:作者-審稿-編輯視野下的高水平論文 直播時間:2024年1月10日(星期三)19:00 2024-01-10 19:00:00 開始 核心期刊:中國給水排水》繼續入編北大《中文核心期刊要目總覽》 中國給水排水核心科技期刊
直播丨《城鎮供水管網漏損控制及評定標準》宣貫會 直播時間:2023年12月27日 09:30—11:00 2023-12-27 12:00:00 開始 【直播】【第五屆水利學科發展前沿學術研討會】王浩院士:從流域視角看城市洪澇治理與海綿城市建設
先進水技術博覽(Part 13)|水回用安全保障的高效監測技術 中國城鎮供水排水協會城鎮水環境專業委員會2023年年會暨換屆大會 直播時間:2023年12月16日(周六)08:30—18:00 2023-12-16 08:30:00 開始
第二屆歐洲華人生態與環境青年學者論壇-水環境專題 直播時間:2023年12月9日(周六)16:00—24:00 2023-12-09 16:00:00 開始 JWPE網絡報告:綜述論文寫作的一點體會 直播時間:2023年11月30日(星期四)19:00 2023-11-30 19:00:00 開始
WaterInsight第9期丨強志民研究員:紫外線水消毒技術 再生水 水域生態學高端論壇(2023)熱帶亞熱帶水生態工程教育部工程研究中心技術委員會會議 直播時間:2023年11月29日(周三) 09:00—17:40 2023-11-29 09:00:00 開始
中國給水排水直播:智慧水務與科技創新高峰論壇 直播時間:2023年11月25日(周六) 13:30 2023-11-25 13:30:00 開始 中國水協團體標準《城鎮污水資源與能源回收利用技術規程》宣貫會通知 中國城鎮供水排水協會
2023年11月14日9:00線上舉行直播/JWPE網絡報告:提高飲用水安全性:應對新的影響并識別重要的毒性因素 直播主題:“對癥下藥”解決工業園區污水處理難題   報告人:陳智  蘇伊士亞洲 技術推廣經理 直播時間:2023年11月2日(周四)14:00—16:00 2023-11-02 14:00:00 開始
10月29日·上海|市政環境治理與水環境可持續發展論壇 BEST第十五期|徐祖信 院士 :長江水環境治理關鍵      直播時間:2023年10月26日(周四)20:00—22:00 2023-10-26 20:00:00 開始
《水工藝工程雜志》系列網絡報告|學術論文寫作之我見 直播時間:2023年10月19日(周四)19:00 2023-10-19 19:00:00 開始 污水處理廠污泥減量技術研討會 直播時間:2023年10月20日13:30-17:30 2023-10-20 13:30:00 開始
技術沙龍 | 先進水技術博覽(Part 12) 直播時間:10月14日(周六)上午10:00-12:00 2023-10-14 10:00:00 開始 直播題目:蘇伊士污泥焚燒及零碳足跡概念污泥廠 主講人:程忠紅 蘇伊士亞洲 技術推廣經理  內容包括: 1.	SUEZ污泥業務產品介紹 2.	全球不同焚燒項目介紹 3.	上海浦東污泥焚燒項目及運營情況
中國給水排水第十四屆中國污泥千人大會參觀項目之一:上海浦東新區污水廠污泥處理處置工程 《水工藝工程雜志》系列網絡報告 直播時間:2023年9月26日 16:00  王曉昌  愛思唯爾期刊《水工藝工程雜志》(Journal of Water Process Engineering)共同主
中國給水排水2024年污水處理廠提標改造(污水處理提質增效)高級研討會(第八屆)邀請函暨征稿啟事  同期召開中國給水排水2024年排水管網大會  (水環境綜合治理)  同期召開中國給水排水 2024年 海綿城市標準化產業化建設的關鍵內容 結合項目案例,詳細介紹海綿城市建設的目標、技術體系及標準體系,探討關鍵技術標準化產業化建設的路徑,提出我國海綿城市建設的發展方向。
報告題目:《城鎮智慧水務技術指南》   中國給水排水直播平臺: 主講人簡介:  簡德武,教授級高級工程師,現任中國市政工程中南設計研究總院黨委委員、副院長,總院技術委員會副主任委員、信息技術委員會副主 第一輪通知 | 國際水協第18屆可持續污泥技術與管理會議 主辦單位:國際水協,中國科學院  聯合主辦單位:《中國給水排水》雜志社 等
技術沙龍 | 先進水技術博覽(Part 11) 直播時間:8月19日(周六)上午10:00-12:00 2023-08-19 10:00:00  廣東匯祥環境科技有限公司  湛蛟  技術總監  天津萬 中國水業院士論壇-中國給水排水直播平臺(微信公眾號cnww1985):自然—社會水循環與水安全學術研討會
WaterInsight第7期丨掀浪:高鐵酸鉀氧化技術的機理新認知及應用 直播時間:2023年8月5日(周六)上午10:00-11:00 2023-08-05 10:00:00 開始 直播:“一泓清水入黃河”之山西省再生水產業化發展專題講座 直播時間:2023年7月23日(周日 )08:00-12:00 2023-07-23 08:00:00 開始
珊氮自養反硝化深度脫氮技術推介會 直播時間:2023年7月21日(周五) 歐仁環境顛覆性技術:污水廠擴容“加速跑”(原有設施不動,污水處理規模擴容1倍!出水水質達地表水準IV類標準�。�,推動污水治理提質增效。  誠征全國各地污水廠提標擴容工程需求方(水務集團、BOT公司、設
直播預告|JWPE網絡報告:自然系統中難降解污染物去除的物化與生化作用及水回用安全保障 中國給水排水 直播題目: 高排放標準下污水中難降解COD的去除技術     報告人:蘇伊士亞洲 技術推廣經理 程忠紅
WaterTalk|王凱軍:未來新水務 一起向未來  For and Beyond Water 中國環境科學學會水處理與回用專業委員會以網絡會議形式舉辦“水與發展縱論”(WaterTalk)系列學術報 5月18日下午 14:00—16:00 直播  題目: 高密度沉淀池技術的迭代更新 主講人: 程忠紅 蘇伊士亞洲 技術推廣經理  大綱:  高密池技術原理 不同型號高密池的差異和應用區別 高密池與其他
BEST|綠色低碳科技前沿與創新發展--中國工程院院士高翔教授  直播時間:2023年4月30日 14:00—16:00 2023-04-30 14:00:00 開始 日照:“碳”尋鄉村振興“綠色密碼”  鳳凰網山東    鄉村生態宜居,鄉村振興的底色才會更亮。我市堅持鄉村建設與后續管護并重,市、區、鎮聯
BEST論壇講座報告第十三期(cnwww1985):全球碳預算和未來全球碳循環的不穩定性風險 The global carbon budget and risks of futur 國際水協IWA 3月17日直播:3月17日 國際水協IWA創新項目獎PIA獲獎項目介紹分享會 直播時間:2023年3月17日 9:00—11:30 2023-03-17 09:00:00 開始
中國給水排水直播:云中漫步-融合大數據、人工智能及云計算的威立雅智慧水務系統Hubgrade 直播時間:2023年3月15日 中國給水排水直播平臺會議通知 | 2023污泥處理處置技術與應用高峰論壇(清華大學王凱軍教授團隊等)
中國污水千人大會參觀項目之一: 云南合續環境科技股份有限公司  海口市西崩潭水質凈化中心 中國給水排水 Water Insight直播:劉銳平  清華大學 環境學院 教授 博士生導師—高濃度硝酸鹽廢水反硝化脫氮過程強化原理與應用 會議時間:2023.1.7(周六)10:00—11:00
智慧水務的工程全生命周期實踐分享 直播時間:2023年1月6日 15:00-16:00 對話嘉賓:竇秋萍  華霖富水利環境技術咨詢(上海)有限公司  總經理 主持人:李德橋   歐特克軟件(中國)有限 蘇伊士 直播時間:12月30日14:00-16:00直播題目:污泥處理處置的“因地制宜和因泥制宜” 主講人:程忠紅,蘇伊士亞洲  技術推廣經理 特邀嘉賓:劉波 中國市政工程西南設計研究總院二院總工 教
蘇伊士 直播時間:12月27日14:00-16:00;復雜原水水質下的飲用水解決方案    陳智,蘇伊士亞洲,技術推廣經理,畢業于香港科技大學土木與環境工程系,熟悉市政及工業的給水及污水處理,對蘇伊士 曲久輝  中國工程院院士,美國國家工程院外籍院士,發展中國家科學院院士;清華大學環境學院特聘教授、博士生導師;中國科學院生態環境研究中心研究員
推薦行業資訊
點擊排行
 
 
主站蜘蛛池模板: 99久久国产综合精品女图图等你| 中文毛片无遮挡高潮免费| 国产网友自拍亚洲av| 国内精品视频一区二区八戒| 熟女人妇交换俱乐部| 性色欲网站人妻丰满中文久久不卡| 体验区试看120秒啪啪免费| 精品久久人妻av中文字幕| 免费人成视频在线| 欧美亚洲国产一区二区三区| 欧美三级日韩三级| 日本欧美久久久久免费播放网| 少妇厨房愉情理9仑片视频| 精品无码av一区二区三区| 亚洲欧美日韩国产精品一区二区| 久久久国产精华液| 成人性生交大免费看| 日本无遮挡吸乳视频| 亚洲精品网站在线观看你懂的| 日本欧美一区二区三区在线播放 | 国产精品亚洲欧美大片在线看 | 国产精品深夜福利免费观看| 国产超碰人人做人人爱| 久久久国产精品无码一区二区| 国产精品亚洲А∨天堂免下载| 99精品国产一区二区三区| 色综合久久婷婷88| 最新国产精品亚洲二区| 999久久66久6只有精品| 精品视频免费在线| 久久丁香视频| 国产精品久久久久影院老司| 久久人人爽人人爽人人片av东京热| 无码伊人久久大蕉中文无码 | 国产黄网永久免费| 妓女网妓女影院妓女网 | 日日噜噜夜夜爽爽| 337p西西人体大胆瓣开下部| 强辱丰满人妻hd中文字幕| 久久中文精品无码中文字幕下载| 日韩在线免费黄片|